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INTRODUCTION

The basic concepts of moment analysis have been used
for estimation of pharmacokinetic parameters such as AUC,
AUMC, mean residence time (MRT), and steady-state volume
of distribution (V). The area the under the effect curve (AUCy)
and area under the moment curve of effect (AUMCf) parameters
can be obtained analogously to AUC and AUMC by numerical
integration, but it is uncertain what these parameters mean in
relation to the kinetics and dynamics of the drug. The concept
of mean residence time for pharmacokinetic systems with non-
linear drug elimination is more complex than for linear systems
(1,2). Since the sigmoid E,,,, model is also nonlinear, the ideas
introduced in earlier work can be considered in pharmacody-
namics. Contrary to previous pharmacokinetic results which
are exact solutions, the pharmacodynamic parameters AUMCg
and mean effect time MET cannot be evaluated exactly.

The purpose of this communication is to derive approximate
equations for AUMCg and MET for a drug injected intravenously
into a one~-compartment model, eliminated by a first-order process,
and producing a direct response according to the sigmoid E, .
equation. The relationships between dose, elimination rate constant
(k.;) and the mean effect parameter are discussed and new method
of estimation of ECs, is presented.

THEORY

The condition is assumed of intravenous injection of a
dose of drug D into a one-compartment system of apparent
volume of distribution, V. The time course of drug concentration
(C) can be described by the equation:

c= %e"‘e" 1)

where &, is the drug elimination constant and D/V is the initial
drug concentration (C,). The drug effect (E) is expected
according to the sigmoid E,,, model (3):

EnaC

E=tc, ¢

@

where E,,. is the maximum intensity of the pharmacologic
response and ECs is the drug concentration eliciting 50% of
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the maximum effect. The total net effect is defined as the area
under the effect curve over the time interval 0 < ¢ =<

]

AUCg = J E() dt 3)

0

The AUC value for these conditions was derived previously
by Wagner (4) and explored by Derendorf (5):
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The total area under the moment curve for effect is given by:

)

AUMCg = J tE(t) dt (5)

0

The mean effect time of drug (MET) can be defined as the ratio:

MET = 6)

Eq. 5 cannot be integrated explicitly. Our objective is to derive
approximate relationships between AUCg and MET and dose
D. A proposed approximate formula is:
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where k is a dimensionless constant:
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According to Eq. 4 and 6 the approximate formula for MET is
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)
Eq. 7 was derived using asymptotic expansion theory (6). It

was assumed that the only varying parameter is dose D whereas
the others remain fixed. Two limits have been considered: for
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large doses (D — ) and for small doses (D — 0). It can be
shown that:

Ema.x D/V ElnllXK
AUMCy = —= In}[1 + + —
UMCE = i (1 ECso) )
ln( D/V)
ECs DIV
+ ol —=2 A 10
DIV s pen e (40
ECs
and:
2
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AUMCe = 30" BCyy ~ W, (EC50>
3
DIV DIV
+ 0 (i1
o[fz)) = Emmo v

The symbol O(+) means that the relative error between the exact
and the approximate values is proportional to the expression
between the parentheses (for a more detailed definition see (6)).
Eq. 7 is a combination of Eq. 10 and 11 resulting from the
assumption that AUMCg is of the form:

D/V) +me N d)(D/V) 12

AUMC, =
E EC50 kz[ ECSO

E,
—max 5.2 +
2% In (1

and the function ¢ is picked such that Eq. 10 and 11 hold. Eq.
9 is obtained by dividing Eq. 7 by Eq. 4. Hence MET for large
doses becomes:

L ln(l +

2k,

D/V) 1
EC k.
v 50 ]ln(l n D/V)

MET =

-1
DIV DIV
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and for small doses:
2
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Eq. 10-14 can be considered as simplifications of Eq. 7 and 9.

METHODS

The values of AUCE for different doses (units = mg) were
obtained from Eq. 4 for conditions of V = 901, EC5, = 100
ng/ml and E,,,, = 1.0. The simulations were done at k,; values
of 0.5, 0.7, and 1.0 1/hr.

The parameter AUMC; was calculated numerically
according to Eq. 5 by means of the Mathematica program
(version 2.2 for SPARC, Wolfram Research Inc.) at different
doses. The integration was performed over time intervals 50,
30, and 20 hr for the corresponding k, values. The MET values
were computed from Eq. 6.

The approximate values AUMCg,,,, and MET,,, were
found after evaluation of Eq. 7 and 9. Dose was employed as
an independent variable in all calculations.
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RESULTS AND DISCUSSION

The values of AUMCg,,,,, and MET,,,, were compared with
numerically obtained values of AUMCg and MET over a wide
range of doses. The data in Figure 1 show the marked nonlinear-
ity in these parameters with dose. Both calculations match very
closely over the entire range of doses suggesting high accuracy
of the approximations. The maximum relative error of both the
AUMCg and MET approximations is of order 0.1% and it occurs
for low doses of about 10 mg.

Approximate formulas obtained by asymptotic analysis
are shown for large doses in Eq. 10 and 13 and for small doses
in Eq. 11 and 14. The relative error of AUMCg,,, is of order
In D/D for large doses and of order D? for small doses. The
relative error of MET,,,,,. is of order 1/D for large doses and
of order D? if they are small.

The parameter AUMCg (or MET) depends on two combi-
nations of parameters: E,./k% and D/VIECs, (or 1/k, and
DIVIECsg). The relative errors do not depend on the value of
k,;. Therefore the approximations remain good for any values
of this rate constant.

The limit of MET as D approaches 0 is 1/k,, as seen in
Eq. 14. This is the intercept of the MET curves in Figure 1.
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Fig. 1. Values of AUC; (upper), AUMCg (middle), and MET (lower)
vs dose. The solid circles are AUMCg and MET values obtained by
numerical integration for k,; = 0.5, 0.7, and 1.0 I/hr. The AUCg curves
were obtained using Eq. 4, and the values of AUMCyg,,,, and MET,,,,,
were calculated from Eq. 7 and 9.



Application of Moment Analysis

Since this is the minimum value of MET, the mean time of
effect must be greater than 1/k,,. This is logical as the normalized
(Effect/E,) response profile must at least superimpose on the
pharmacokinetic function when E,,, is not attained.

The AUCg, AUMCg, and MET data presented in Figure 1
differ from each other only by the factors E,,/K.;, Epa/k%, and
1/k,;, respectively. Thus other curves can be obtained from that
corresponding to E,,, = 1.0 and k,, = 1.0 by multiplying by
these factors.

A change of variable T = k¢ in the integral in Eq. 5 leads to:

Epox [* 1€ " dv
AUMCg = —5 | —/—— 15
£k L ECs, _T (15
D/v
and consequently:
1 [* 71e™7dr D/v
MET=—| ————In"Y{1+ 16
kel,[) ECS() — ( EC50> ( )
—=+te
D/v

Eq. 15 and 16 explain the fact that AUMC, depends only on
E,../k% and D/VIECs, and MET depends only on 1/k,; and
D/VIECs,. Since AUMCg,,, and MET,,,, show the same
type of dependence, their relative errors also depend only on
DIVIECs,.

Since the errors occurring for AUCg, AUMCg and MET
obtained from experimental data are typically much greater
than 1%, then the approximate formulas AUMCg,,,, (Eq. 7)
and MET,,,. (Eq. 9) are practically exact.

If the accuracy of these approximations is not an issue,
then Eq. 10 and 11 imply that:

E, DIV DIV
MCy ~ —= In? 1
AUMCg 2 n ( z C50> for large values of EC a7
and:
Epe DIV DIV
AUMC, ~ fi 11 val 1
UMCg 12 ECe or small values of ECs, (18)

Hence for large doses AUMCy is proportional to In*> D and for
small doses AUMCk, is proportional to D. Similarly, Eq. 13 and
14 yield:

MET ~ 211%' ln(l?é‘;) for large values of I?C/'Z) (19)
and
1 1 DIV DIy
~— 1
MET TN for small values of o (20

Thus, for large doses MET is proportional to In D and for small
doses MET is close to 1/k,;, which is the mean residence time
(MRT) of drug with an iv type of concentration time profile
(Fig. 2 and Eq. 1). If the drug effect is described by Eq. 2, then
the mean effect time is always greater than 1/k,,;. Since for large
doses AUCg ~ E, . /k.; In (DIVIECS;), then:

Kk AUMC

A F =
2E, 0 UCe E... AUC

MET ~ 21

where k is defined in Eq. 8. Of practical value, Eq. 19 and 20
show that the difference of MET and MRT is determined by
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Fig. 2. Plasma concentration versus time and Effect versus time pro-
files for four doses of drug where Cy = ECj, for the low dose and C,
= 0.1, 1.0, 10, and 100 X ECsy. Triangles mark the MRT for the
kinetics and MET for the dynamics.

D/V and ECsy and can be used for estimation of the value of
MET, viz:

MET ~ MRT+% I?C/'z/o MRT for small values of l?é; (22)
or for ECs,:
ECs DIV (for small doses) (23)
o MET _ |
MRT

The relative error of these estimations is about 4% for the ratio
D/V close to the value of ECsy and becomes less for smaller
doses. It is independent of the &,, value. Computer simulations
show that Eq. 22 and 23 remain approximate if drug disposition
(iv dose) is polyexponential but only if C, is less than ECs,.

If the effect is related to Eq. 2 modified with the Hill
coefficient vy:

E,uCY

E=—28"__
ECh + C

(24)
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Fig. 3. Comparison of MET values obtained by numerical integration
(Eq. 4-6, solid line), calculation (Eq. 9, also solid line), and approxima-

tion (Eq. 21 and 22, dashed lines) in relation to Cy/ECs, ratios. The
insert shows results for small values of Cy/ECs.

then all results remain valid after substitutions of k,, = vk,, and
DIVIECsy = (DIVIECsp)y in all equations. Eq. 23 becomes

DIV

EC50 -~ _——ll
T

(for small doses) (25)

MRT

The use of numerical integration to calculate AUCg and AUMCg
may require extrapolation of the terminal effect (E*) phase to
infinity. Since the terminal phase is described by E*e %, the
same equations for AUC (E*/k,) and AUMC (E*T/k, +
E*/k%) may be used.

Moment analysis and generation of MET has been of
descriptive value in summarizing pharmacodynamic data (7).
The present formulas for AUCg, AUMCg, and MET allow us
to understand better the relationships between these parameters
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and other pharmacokinetic and pharmacodynamic factors. Eq.
4,7, and 9 are useful in assessing the values of AUCg, AUMCE,
and MET based on experimental data. They are also helpful in
analysis of these parameters evaluated by computer. Eq. 22
provides an estimate of ECs, in low dose situations. Usually
obtaining ECs, is dependent on having an accurate value of
E,.oc with use of large doses of drug. The present equations
pertain for direct drug effects and only if monoexponential or
polyexponential (multicompartmental) drug disposition occurs;
computer simulations show that they become inaccurate if the
pharmacokinetic function is biphasic (absorption or biophase).

CONCLUSIONS

Approximate equations for AUMCg and MET are derived
for a system where drug is injected intravenously into a one-
compartment model and eliminated by a first-order process.
The drug effect must be produced directly according to the
sigmoid E,,,,, model or Hill function. The equations are validated
by comparison of results obtained by direct calculation versus
numerical estimation. The MET is determined by a complex
relationship involving Dose, V, k., and ECs,. The minimum
value of MET is 1/k,; or MRT and the ratio of MET/MRT may
provide a means of estimation of ECsg at low drug doses where
such values are usually unobtainable.
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